Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808845

RESUMO

The temporal dynamics of visual information processing varies with the stimulus being processed and with the retinal location that initiates the processing. Here, we present psychophysical data with sub-millisecond precision showing that increasing eccentricity decreases the delay with which stimuli are processed. We show that, even within the central +/-6° of the visual field, processing delays change by a factor of up to three times. A simple model, grounded in retinal physiology, provides a good account of the data. The relative delays are on the order of only milliseconds. But if later processing leaves the delays unresolved, they can cause dramatic misperceptions of motion and 3D layout. We discuss the implications for how the human visual system solves the temporal binding problem across eccentricity. The results highlight the severe computational challenge of obtaining accurate, temporally-unified percepts of the environment with spatiotemporally-staggered processing across the visual field.

2.
Psychol Rev ; 130(4): 1125-1136, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35549319

RESUMO

Psychology and philosophy have long reflected on the role of perspective in vision. Since the dawn of modern vision science-roughly, since Helmholtz in the late 1800s-scientific explanations in vision have focused on understanding the computations that transform the sensed retinal image into percepts of the three-dimensional environment. The standard view in the science is that distal properties-viewpoint-independent properties of the environment (object shape) and viewpoint-dependent relational properties (3D orientation relative to the viewer)-are perceptually represented and that properties of the proximal stimulus (in vision, the retinal image) are not. This view is woven into the nature of scientific explanation in perceptual psychology, and has guided impressive advances over the past 150 years. A recently published article suggests that in shape perception, the standard view must be revised. It argues, on the basis of new empirical data, that a new entity-perspectival shape-should be introduced into scientific explanations of shape perception. Specifically, the article's centrally advertised claim is that, in addition to distal shape, perspectival shape is perceived. We argue that this claim rests on a series of mistakes. Problems in experimental design entail that the article provides no empirical support for any claims regarding either perspective or the perception of shape. There are further problems in scientific reasoning and conceptual development. Detailing these criticisms and explaining how science treats these issues are meant to clarify method and theory, and to improve exchanges between the science and philosophy of perception. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Moral , Humanos , Proteína X Associada a bcl-2
3.
J Vis ; 22(12): 12, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355360

RESUMO

Temporal differences in visual information processing between the eyes can cause dramatic misperceptions of motion and depth. Processing delays between the eyes cause the Pulfrich effect: oscillating targets in the frontal plane are misperceived as moving along near-elliptical motion trajectories in depth (Pulfrich, 1922). Here, we explain a previously reported but poorly understood variant: the anomalous Pulfrich effect. When this variant is perceived, the illusory motion trajectory appears oriented left- or right-side back in depth, rather than aligned with the true direction of motion. Our data indicate that this perceived misalignment is due to interocular differences in neural temporal integration periods, as opposed to interocular differences in delay. For oscillating motion, differences in the duration of temporal integration dampen the effective motion amplitude in one eye relative to the other. In a dynamic analog of the Geometric effect in stereo-surface-orientation perception (Ogle, 1950), the different motion amplitudes cause the perceived misorientation of the motion trajectories. Forced-choice psychophysical experiments, conducted with both different spatial frequencies and different onscreen motion damping in the two eyes show that the perceived misorientation in depth is associated with the eye having greater motion damping. A target-tracking experiment provided more direct evidence that the anomalous Pulfrich effect is caused by interocular differences in temporal integration and delay. These findings highlight the computational hurdles posed to the visual system by temporal differences in sensory processing. Future work will explore how the visual system overcomes these challenges to achieve accurate perception.


Assuntos
Ilusões , Percepção de Movimento , Humanos , Percepção de Profundidade , Percepção Visual , Movimento (Física)
4.
J Vis ; 22(5): 2, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394508

RESUMO

A goal of visual perception is to provide stable representations of task-relevant scene properties (e.g. object reflectance) despite variation in task-irrelevant scene properties (e.g. illumination and reflectance of other nearby objects). To study such stability in the context of the perceptual representation of lightness, we introduce a threshold-based psychophysical paradigm. We measure how thresholds for discriminating the achromatic reflectance of a target object (task-relevant property) in rendered naturalistic scenes are impacted by variation in the reflectance functions of background objects (task-irrelevant property), using a two-alternative forced-choice paradigm in which the reflectance of the background objects is randomized across the two intervals of each trial. We control the amount of background reflectance variation by manipulating a statistical model of naturally occurring surface reflectances. For low background object reflectance variation, discrimination thresholds were nearly constant, indicating that observers' internal noise determines threshold in this regime. As background object reflectance variation increases, its effects start to dominate performance. A model based on signal detection theory allows us to express the effects of task-irrelevant variation in terms of the equivalent noise, that is relative to the intrinsic precision of the task-relevant perceptual representation. The results indicate that although naturally occurring background object reflectance variation does intrude on the perceptual representation of target object lightness, the effect is modest - within a factor of two of the equivalent noise level set by internal noise.


Assuntos
Sensibilidades de Contraste , Luz , Humanos , Iluminação , Estimulação Luminosa , Percepção Visual
5.
J Vis ; 22(5): 6, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467704

RESUMO

Binocular stereo cues are important for discriminating 3D surface orientation, especially at near distances. We devised a single-interval task where observers discriminated the slant of a densely textured planar test surface relative to a textured planar surround reference surface. Although surfaces were rendered with correct perspective, the stimuli were designed so that the binocular cues dominated performance. Slant discrimination performance was measured as a function of the reference slant and the level of uncorrelated white noise added to the test-plane images in the left and right eyes. We compared human performance with an approximate ideal observer (planar matching [PM]) and two subideal observers. The PM observer uses the image in one eye and back projection to predict a test image in the other eye for all possible slants, tilts, and distances. The estimated slant, tilt, and distance are determined by the prediction that most closely matches the measured image in the other eye. The first subideal observer (local planar matching [LPM]) applies PM over local neighborhoods and then pools estimates across the test plane. The second suboptimal observer (local frontoparallel matching [LFM]) uses only location disparity. We find that the ideal observer (PM) and the first subideal observer (LPM) outperforms the second subideal observer (LFM), demonstrating the additional benefit of pattern disparities. We also find that all three model observers can account for human performance, if two free parameters are included: a fixed small level of internal estimation noise, and a fixed overall efficiency scalar on slant discriminability.


Assuntos
Sinais (Psicologia) , Percepção de Profundidade , Olho , Humanos
6.
Sci Rep ; 10(1): 16086, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999323

RESUMO

Interocular differences in image blur can cause processing speed differences that lead to dramatic misperceptions of the distance and three-dimensional direction of moving objects. This recently discovered illusion-the reverse Pulfrich effect-is caused by optical conditions induced by monovision, a common correction for presbyopia. Fortunately, anti-Pulfrich monovision corrections, which darken the blurring lens, can eliminate the illusion for many viewing conditions. However, the reverse Pulfrich effect and the efficacy of anti-Pulfrich corrections have been demonstrated only with trial lenses. This situation should be addressed, for clinical and scientific reasons. First, it is important to replicate these effects with contact lenses, the most common method for delivering monovision. Second, trial lenses of different powers, unlike contacts, can cause large magnification differences between the eyes. To confidently attribute the reverse Pulfrich effect to interocular optical blur differences, and to ensure that previously reported effect sizes are reliable, one must control for magnification. Here, in a within-observer study with five separate experiments, we demonstrate that (1) contact lenses and trial lenses induce indistinguishable reverse Pulfrich effects, (2) anti-Pulfrich corrections are equally effective when induced by contact and trial lenses, and (3) magnification differences do not cause or impact the Pulfrich effect.

7.
J Vis ; 20(8): 10, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32761107

RESUMO

Binocular fusion relies on matching points in the two eyes that correspond to the same physical feature in the world; however, not all world features are binocularly visible. Near depth edges, some regions of a scene are often visible to only one eye (so-called half occlusions). Accurate detection of these monocularly visible regions is likely to be important for stable visual perception. If monocular regions are not detected as such, the visual system may attempt to binocularly fuse non-corresponding points, which can result in unstable percepts. We investigated the hypothesis that the visual system capitalizes on statistical regularities associated with depth edges in natural scenes to aid binocular fusion and facilitate perceptual stability. By sampling from a large set of stereoscopic natural images with co-registered distance information, we found evidence that monocularly visible regions near depth edges primarily result from background occlusions. Accordingly, monocular regions tended to be more visually similar to the adjacent binocularly visible background region than to the adjacent binocularly visible foreground. Consistent with our hypothesis, perceptual experiments showed that perception tended to be more stable when the image properties of the depth edge were statistically more likely given the probability of occurrence in natural scenes (i.e., when monocular regions were more visually similar to the binocular background). The generality of these results was supported by a parametric study with simulated environments. Exploiting regularities in natural environments may allow the visual system to facilitate fusion and perceptual stability when both binocular and monocular regions are visible.


Assuntos
Percepção de Profundidade/fisiologia , Estatística como Assunto , Visão Binocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Probabilidade , Disparidade Visual/fisiologia , Adulto Jovem
8.
Annu Rev Vis Sci ; 6: 491-517, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32580664

RESUMO

An ideal observer is a theoretical model observer that performs a specific sensory-perceptual task optimally, making the best possible use of the available information given physical and biological constraints. An image-computable ideal observer (pixels in, estimates out) is a particularly powerful type of ideal observer that explicitly models the flow of visual information from the stimulus-encoding process to the eventual decoding of a sensory-perceptual estimate. Image-computable ideal observer analyses underlie some of the most important results in vision science. However, most of what we know from ideal observers about visual processing and performance derives from relatively simple tasks and relatively simple stimuli. This review describes recent efforts to develop image-computable ideal observers for a range of tasks with natural stimuli and shows how these observers can be used to predict and understand perceptual and neurophysiological performance. The reviewed results establish principled links among models of neural coding, computational methods for dimensionality reduction, and sensory-perceptual performance in tasks with natural stimuli.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Percepção Visual/fisiologia , Humanos , Modelos Teóricos , Psicofísica
9.
PLoS Comput Biol ; 16(6): e1007947, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579559

RESUMO

Visual systems estimate the three-dimensional (3D) structure of scenes from information in two-dimensional (2D) retinal images. Visual systems use multiple sources of information to improve the accuracy of these estimates, including statistical knowledge of the probable spatial arrangements of natural scenes. Here, we examine how 3D surface tilts are spatially related in real-world scenes, and show that humans pool information across space when estimating surface tilt in accordance with these spatial relationships. We develop a hierarchical model of surface tilt estimation that is grounded in the statistics of tilt in natural scenes and images. The model computes a global tilt estimate by pooling local tilt estimates within an adaptive spatial neighborhood. The spatial neighborhood in which local estimates are pooled changes according to the value of the local estimate at a target location. The hierarchical model provides more accurate estimates of groundtruth tilt in natural scenes and provides a better account of human performance than the local estimates. Taken together, the results imply that the human visual system pools information about surface tilt across space in accordance with natural scene statistics.


Assuntos
Gestão da Informação , Modelos Teóricos , Interface Usuário-Computador , Humanos
10.
J Neurosci ; 40(4): 864-879, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31772139

RESUMO

A core goal of visual neuroscience is to predict human perceptual performance from natural signals. Performance in any natural task can be limited by at least three sources of uncertainty: stimulus variability, internal noise, and suboptimal computations. Determining the relative importance of these factors has been a focus of interest for decades but requires methods for predicting the fundamental limits imposed by stimulus variability on sensory-perceptual precision. Most successes have been limited to simple stimuli and simple tasks. But perception science ultimately aims to understand how vision works with natural stimuli. Successes in this domain have proven elusive. Here, we develop a model of humans based on an image-computable (images in, estimates out) Bayesian ideal observer. Given biological constraints, the ideal optimally uses the statistics relating local intensity patterns in moving images to speed, specifying the fundamental limits imposed by natural stimuli. Next, we propose a theoretical link between two key decision-theoretic quantities that suggests how to experimentally disentangle the impacts of internal noise and deterministic suboptimal computations. In several interlocking discrimination experiments with three male observers, we confirm this link and determine the quantitative impact of each candidate performance-limiting factor. Human performance is near-exclusively limited by natural stimulus variability and internal noise, and humans use near-optimal computations to estimate speed from naturalistic image movies. The findings indicate that the partition of behavioral variability can be predicted from a principled analysis of natural images and scenes. The approach should be extendable to studies of neural variability with natural signals.SIGNIFICANCE STATEMENT Accurate estimation of speed is critical for determining motion in the environment, but humans cannot perform this task without error. Different objects moving at the same speed cast different images on the eyes. This stimulus variability imposes fundamental external limits on the human ability to estimate speed. Predicting these limits has proven difficult. Here, by analyzing natural signals, we predict the quantitative impact of natural stimulus variability on human performance given biological constraints. With integrated experiments, we compare its impact to well-studied performance-limiting factors internal to the visual system. The results suggest that the deterministic computations humans perform are near optimal, and that behavioral responses to natural stimuli can be studied with the rigor and interpretability defining work with simpler stimuli.


Assuntos
Percepção de Movimento/fisiologia , Detecção de Sinal Psicológico/fisiologia , Humanos , Masculino , Estimulação Luminosa , Psicofísica , Percepção Visual/fisiologia
11.
J Vis ; 19(13): 4, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689717

RESUMO

To model the responses of neurons in the early visual system, at least three basic components are required: a receptive field, a normalization term, and a specification of encoding noise. Here, we examine how the receptive field, the normalization factor, and the encoding noise affect the drive to model-neuron responses when stimulated with natural images. We show that when these components are modeled appropriately, the response drives elicited by natural stimuli are Gaussian-distributed and scale invariant, and very nearly maximize the sensitivity (d') for natural-image discrimination. We discuss the statistical models of natural stimuli that can account for these response statistics, and we show how some commonly used modeling practices may distort these results. Finally, we show that normalization can equalize important properties of neural response across different stimulus types. Specifically, narrowband (stimulus- and feature-specific) normalization causes model neurons to yield Gaussian response-drive statistics when stimulated with natural stimuli, 1/f noise stimuli, and white-noise stimuli. The current work makes recommendations for best practices and lays a foundation, grounded in the response statistics to natural stimuli, upon which to build principled models of more complex visual tasks.


Assuntos
Modelos Estatísticos , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Humanos
12.
Curr Biol ; 29(15): 2586-2592.e4, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353183

RESUMO

Monovision is a common prescription lens correction for presbyopia [1]. Each eye is corrected for a different distance, causing one image to be blurrier than the other. Millions of people have monovision corrections, but little is known about how interocular blur differences affect motion perception. Here, we report that blur differences cause a previously unknown motion illusion that makes people dramatically misperceive the distance and three-dimensional direction of moving objects. The effect occurs because the blurry and sharp images are processed at different speeds. For moving objects, the mismatch in processing speed causes a neural disparity, which results in the misperceptions. A variant of a 100-year-old stereo-motion phenomenon called the Pulfrich effect [2], the illusion poses an apparent paradox: blur reduces contrast, and contrast reductions are known to cause neural processing delays [3-6], but our results indicate that blurry images are processed milliseconds more quickly. We resolve the paradox with known properties of the early visual system, show that the misperceptions can be severe enough to impact public safety, and demonstrate that the misperceptions can be eliminated with novel combinations of non-invasive ophthalmic interventions. The fact that substantial perceptual errors are caused by millisecond differences in processing speed highlights the exquisite temporal calibration required for accurate perceptual estimation. The motion illusion-the reverse Pulfrich effect-and the paradigm we use to measure it should help reveal how optical and image properties impact temporal processing, an important but understudied issue in vision and visual neuroscience.


Assuntos
Percepção de Profundidade , Ilusões , Percepção de Movimento , Presbiopia/terapia , Visão Monocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Movimento (Física) , Adulto Jovem
13.
J Vis ; 18(13): 19, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593061

RESUMO

The human visual system supports stable percepts of object color even though the light that reflects from object surfaces varies significantly with the scene illumination. To understand the computations that support stable color perception, we study how estimating a target object's luminous reflectance factor (LRF; a measure of the light reflected from the object under a standard illuminant) depends on variation in key properties of naturalistic scenes. Specifically, we study how variation in target object reflectance, illumination spectra, and the reflectance of background objects in a scene impact estimation of a target object's LRF. To do this, we applied supervised statistical learning methods to the simulated excitations of human cone photoreceptors, obtained from labeled naturalistic images. The naturalistic images were rendered with computer graphics. The illumination spectra of the light sources and the reflectance spectra of the surfaces in the scene were generated using statistical models of natural spectral variation. Optimally decoding target object LRF from the responses of a small learned set of task-specific linear receptive fields that operate on a contrast representation of the cone excitations yields estimates that are within 13% of the correct LRF. Our work provides a framework for evaluating how different sources of scene variability limit performance on luminance constancy.


Assuntos
Percepção de Cores/fisiologia , Luz , Iluminação , Reconhecimento Visual de Modelos/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Feminino , Humanos , Masculino , Modelos Estatísticos , Estimulação Luminosa
14.
J Vis ; 18(6): 4, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029214

RESUMO

Local depth variation is a distinctive property of natural scenes, but its effects on perception have only recently begun to be investigated. Depth variation in natural scenes is due to depth edges between objects and surface nonuniformities within objects. Here, we demonstrate how natural depth variation impacts performance in two fundamental tasks related to stereopsis: half-occlusion detection and disparity detection. We report the results of a computational study that uses a large database of natural stereo-images and coregistered laser-based distance measurements. First, we develop a procedure for precisely sampling stereo-image patches from the stereo-images and then quantify the local depth variation in each patch by its disparity contrast. Next, we show that increased disparity contrast degrades half-occlusion detection and disparity detection performance and changes the size and shape of the spatial integration areas ("receptive fields") that optimize performance. Then, we show that a simple image-computable binocular statistic predicts disparity contrast in natural scenes. Finally, we report the most likely spatial patterns of disparity variation and disparity discontinuities (half-occlusions) in natural scenes. Our findings motivate computational and psychophysical investigations of the mechanisms that underlie stereo processing tasks in local regions of natural scenes.


Assuntos
Percepção de Profundidade/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Percepção Visual/fisiologia , Humanos , Psicofísica
15.
Elife ; 72018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29384477

RESUMO

Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world.


Assuntos
Encéfalo/fisiologia , Orientação , Percepção Visual , Simulação por Computador , Voluntários Saudáveis , Humanos
16.
J Vis ; 17(12): 16, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29071353

RESUMO

Understanding how nervous systems exploit task-relevant properties of sensory stimuli to perform natural tasks is fundamental to the study of perceptual systems. However, there are few formal methods for determining which stimulus properties are most useful for a given natural task. As a consequence, it is difficult to develop principled models for how to compute task-relevant latent variables from natural signals, and it is difficult to evaluate descriptive models fit to neural response. Accuracy maximization analysis (AMA) is a recently developed Bayesian method for finding the optimal task-specific filters (receptive fields). Here, we introduce AMA-Gauss, a new faster form of AMA that incorporates the assumption that the class-conditional filter responses are Gaussian distributed. Then, we use AMA-Gauss to show that its assumptions are justified for two fundamental visual tasks: retinal speed estimation and binocular disparity estimation. Next, we show that AMA-Gauss has striking formal similarities to popular quadratic models of neural response: the energy model and the generalized quadratic model (GQM). Together, these developments deepen our understanding of why the energy model of neural response have proven useful, improve our ability to evaluate results from subunit model fits to neural data, and should help accelerate psychophysics and neuroscience research with natural stimuli.


Assuntos
Modelos Neurológicos , Percepção Visual/fisiologia , Teorema de Bayes , Humanos , Distribuição Normal , Psicofísica , Retina/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia
17.
PLoS Comput Biol ; 13(2): e1005281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28178266

RESUMO

Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA's compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA's unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important.


Assuntos
Modelos Neurológicos , Modelos Estatísticos , Psicometria/métodos , Análise e Desempenho de Tarefas , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
18.
J Vis ; 16(13): 2, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27738702

RESUMO

Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations.


Assuntos
Sinais (Psicologia) , Imageamento Tridimensional , Orientação , Reconhecimento Visual de Modelos/fisiologia , Percepção de Profundidade , Humanos , Fotografação/instrumentação , Probabilidade
19.
Nat Commun ; 6: 7900, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238697

RESUMO

Accurate perception of motion depends critically on accurate estimation of retinal motion speed. Here we first analyse natural image movies to determine the optimal space-time receptive fields (RFs) for encoding local motion speed in a particular direction, given the constraints of the early visual system. Next, from the RF responses to natural stimuli, we determine the neural computations that are optimal for combining and decoding the responses into estimates of speed. The computations show how selective, invariant speed-tuned units might be constructed by the nervous system. Then, in a psychophysical experiment using matched stimuli, we show that human performance is nearly optimal. Indeed, a single efficiency parameter accurately predicts the detailed shapes of a large set of human psychometric functions. We conclude that many properties of speed-selective neurons and human speed discrimination performance are predicted by the optimal computations, and that natural stimulus variation affects optimal and human observers almost identically.


Assuntos
Percepção de Movimento/fisiologia , Neurônios/fisiologia , Retina/fisiologia , Córtex Visual/fisiologia , Discriminação Psicológica , Humanos , Estimulação Luminosa , Psicometria , Psicofísica , Limiar Sensorial , Vias Visuais
20.
J Vis ; 15(5): 16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26067534

RESUMO

The lens system in the human eye is able to best focus light from only one distance at a time.Therefore, many objects in the natural environment are not imaged sharply on the retina. Furthermore, light from objects in the environment is subject to the particular aberrations of the observer's lens system (e.g., astigmatism and chromatic aberration). We refer to blur created by the observer's optics as "natural" or "defocus" blur as opposed to "on-screen" blur created by software on a display screen. Although blur discrimination has been studied extensively, human ability to discriminate defocus blur in images of natural scenes has not been systematically investigated. Here, we measured discrimination of defocus blur for a collection of natural image patches, sampled from well-focused photographs. We constructed a rig capable of presenting stimuli at three physical distances simultaneously. In Experiment 1, subjects viewed monocularly two simultaneously presented natural image patches through a 4-mm artificial pupil at ±1° eccentricity. The task was to identify the sharper patch. Discrimination thresholds varied substantially between stimuli but were correlated between subjects. The lowest thresholds were at or below the lowest thresholds ever reported. In a second experiment, we paralyzed accommodation and retested a subset of conditions from Experiment 1. A third experiment showed that removing contrast as a cue to defocus blur had only a modest effect on thresholds. Finally, we describe a simple masking model and evaluate how well it can explain our experimental results and the results from previous blur discrimination experiments.


Assuntos
Astigmatismo/fisiopatologia , Cristalino/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Retina/fisiologia , Adulto , Feminino , Humanos , Matemática , Psicofísica , Limiar Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...